Factorization of Multiple Tensors for Supervised Feature Extraction

نویسنده

  • Wei Liu
چکیده

Tensors are effective representations for complex and time-varying networks. The factorization of a tensor provides a high-quality low-rank compact basis for each dimension of the tensor, which facilitates the interpretation of important structures of the represented data. Many existing tensor factorization (TF) methods assume there is one tensor that needs to be decomposed to low-rank factors. However in practice, data are usually generated from different time periods or by different class labels, which are represented by a sequence of multiple tensors associated with different labels. When one needs to analyse and compare multiple tensors, existing TF methods are unsuitable for discovering all potentially useful patterns, as they usually fail to discover either common or unique factors among the tensors: 1) if each tensor is factorized separately, the factor matrices will fail to explicitly capture the common information shared by different tensors, and 2) if tensors are concatenated together to form a larger “overall” tensor and then factorize this concatenated tensor, the intrinsic unique subspaces that are specific to each tensor will be lost. The cause of such an issue is mainly from the fact that existing tensor factorization methods handle data observations in an unsupervised way, considering only features but not labels of the data. To tackle this problem, we design a novel probabilistic tensor factorization model that takes both features and class labels of tensors into account, and produces informative common and unique factors of all tensors simultaneously. Experiment results on feature extraction in classification problems demonstrate the effectiveness of the factors discovered by our method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

جاسازی خط ویژگی وزن‌دار برای استخراج ویژگی تصاویر ابرطیفی

One of the most preprocessing steps before the classification of hyperspectral images is supervised feature extraction. Because obtaining the training samples is hard and time consuming, the number of available training samples is limited. We propose a supervised feature extraction method in this paper that is efficient in small sample size situation. The proposed method, which is called weight...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016